27.04.2024

Модуль поверхности бетонной конструкции это

admin Март 11, 2020 Полезные советы 2 комментария

Бетонирование конструкций выполняют различными способами в зависимости от их места в конструктивной схеме возводимого здания, размеров, применяемой опалубки и арматурных каркасов, удобоукладываемости бетонной смеси, наличия парка механизмов и транспортных средств на строи­тельстве. В зависимости от глубины опускания бетонной смеси в опалубку или котлован укладку ее при устройстве фундаментов и других масси­вов производят с помощью ленточных конвейеров, виброжелобов, звень­евых хоботов или виброхоботов.

Уложенную бетонную смесь уплотняют слоями при помощи глубин­ных вибраторов (вибробулав или виброигл, одиночных или собранных в пакеты по 2—4 иглы).

Бетонирование стен

Стены или перегородки можно бетонировать двумя спосо­бами: а) с устройством опалубки с одной стороны на всю высоту кон­струкции, с другой — по мере укладки бетонной смеси; б) с установкой опалубки с обеих сторон стены или перегородки на всю их высоту.

При первом способе бетонируют, укладывая бетонную смесь со сто­роны, не имеющей опалубки, на всю высоту.

Читайте также: Вес 1 м3 керамзитобетона – Масса керамзитобетона — Справочник массы

В этом случае вначале устанавливают опалубку на высоту 0,8—1 м, затем в нее укладывают на эту высоту бетонную смесь при помощи ленточного конвейера, вибро­желобов, бетоноводов от бетононасоса или пневмонагнетателя. Далее опалубку уста­навливают на такую же высоту и укладывают в нее новую порцию смеси. Последний ярус опалубки не доводят до полной высоты конструкции на 0,3—0,4 м с таким расчетом, чтобы через это пространство можно было уложить и уплотнить последнюю порцию бетонной смеси. Уплотнение укладываемой смеси производят глубинными вибраторами по ярусам по мере ее укладки.

При втором способе, когда опалубка установлена с обеих сторон стены или перегородки на всю высоту, в одной из сторон делают отвер­стие высотой около 0,4 м. Через это отверстие бетонную смесь укалыва­ют виброжелобами либо звеньевыми хоботами или опускают в опалуб­ку бетоновод от бетононасоса либо пневмонагнетателя. Сбрасывать бе­тонную смесь сверху нельзя — она будет расслаиваться. Укладку ведут слоями высотой около 1 м, уплотняя бетонную смесь глубинными виб­раторами. Наиболее рациональна укладка смеси при помощи бетоно­водов.

Обработка зимнего бетона

В случае если по окончании комплекта полной прочности монолиты и зимний бетон из неподготовленного бетона обычной влажности обрабатываются в полной мере традиционно, то устройство и перфорация проемов в монолите до комплекта им прочности имеет свою специфику.

Несложнее говоря, не собравший марочную прочность и замерзший бетон не следует дробить перфоратором и отбойным молотком. В этом случае вероятно появление трещин.

Оптимальный метод устройства проемов — формирование опалубки для них еще на стадии заливки монолита. Среди другого, в этом случае вероятна полноценная анкеровка краев арматуры по краям проема. Там, где это нереально и проем нужно будет вырезать по месту, используется рифленая арматура: рифление на ее поверхности само по себе является анкером для прутка.

Полезно: для устройства отверстия (к примеру, продуха либо ввода коммуникаций в ленточном фундаменте) при его заливке своими руками достаточно заложить в опалубку асбестоцементную либо пластиковую трубу соответствующего диаметра.

Для фактически обработки там, где без нее не обойтись, предпочтителен алмазный инструмент. Алмазное бурение отверстий в бетоне не требует применения ударного режима; как следствие — меньше возможность сколов и трещин. Резка железобетона алмазными кругами оставляет края реза идеально ровными и, что весьма комфортно, не требует смены режущего круга при резке армирования.



Каркасные конструкции

Каркасные конструкции бетонируют, начиная с колонн. Бетонную смесь укладывают в опалубку сверху при высоте колонн до 5 м и поперечном сечении не менее 40X40 см. При меньшем сечении на одной из сторон опалубки делают боковые люки (для уклад­ки бетона) через 1—1,5 м один от другого по высоте. Бетонную смесь укладывают слоями 1—1,5 м, уплотняя глубинными вибраторами (виб­роиглами).

При бетонировании каркасов применяется глубинное вибрирование. В некоторых случаях (при частом расположении арматурных стерж­ней) по указанию проекта используется наружное вибрирование. Прогоны и балки бетонируют одновременно с плитами пере­крытий через 1—2 ч после бетонирования колонн. Бетонную смесь в балках уплотняют стержневыми дебалансными вибраторами или виб­роиглами, а плиты — площадочными вибраторами, заглаживая их по­верхность затирочными машинами.

Бетонирование сооружений в подвижной (скользя­щей) опалубке начинают с укладки бетонной смеси до половины высоты формы. Если через некоторое время после подня­тия формы бетонная смесь не расслоится (не оторвется вместе с подни­маемой опалубкой), приступают к дальнейшему бетонированию: медленно и непрерывно поднимают форму домкратами, укладывая при этом бетонную смесь слоями 10—15 сл. Укладку бетонной смеси не до­водят до верха формы на 20—25 см.

К отделке (затирке) поверхности бетона приступают не позднее 4—5 ч после поднятия опалубки. В целях более эффективного использования подвижной опалубки применяют ряд указываемых в проекте мер по ускорению твердения бетона: используют быстротвердеющие цементы, уменьшают водоцементное отношение, применяют химические добавки и т. п.



Что с этим делать

Итак, мы обучились вычислять некоторый параметр, который воздействует на скорость остывания массива на холоде. И как применить его в настоящем постройке?

охлаждения и Скорость нагрева

Потому, что обеспечить одновременный нагрев либо охлаждение бетона по всему объему массива нереально, любое изменение условий волей-неволей приведет к появлению дельты температур между поверхностью и ядром.

Внимание: эта дельта будет тем больше, чем более массивна конструкция. Другими словами, несложнее говоря, чем меньше отношение ее площади к объему.

Повышение перепада температур между поверхностью и ядром неизбежно приведет к росту внутренних напряжений в материале; потому, что речь заходит о бетоне, не собравшем прочность, трещины не просто вероятны — гарантированы.

Выход? Он сводится к тому, дабы максимально замедлить изменение температуры поверхности массива.

Читайте также: Все об устройстве монолитных перекрытий – что нужно знать для самостоятельного строительства

Модуль поверхности Скорость трансформации температуры
Мп до 4 1/м Не больше 5 градусов/час
Мп лежит в диапазоне 5 — 10 1/м Не больше 10 градусов/час
Мп более 10 1/м Не больше 15 градусов/час

Стабильность температур при охлаждении обеспечивается, в большинстве случаев, теплоизоляцией цементного монолита; при нагреве — регулировкой мощности кабеля для бетона либо тепловой пушки.

Выбор метода поддержания температуры

Это применение взятого значения модуля поверхности имеет прямое отношение к расчету скорости нагрева/охлаждения: на базе выполненного расчета выбирается метод стабилизации температуры до комплекта бетоном прочности.

Для модуля поверхности не выше 6 достаточно так именуемого метода термоса. Форма просто-напросто как следует теплоизолируется, что значительно уменьшает теплоотдачу.

Помимо этого: в ходе гидратации (химических реакций портландцемента с водой) выделяется достаточно большое количество тепла, которое содействует саморазогреву смеси.

Для Мп в диапазоне 6 — 10 1/м вероятно пара решений:

  • Смесь разогревается перед укладкой в форму. В этом случае при должной теплоизоляции возрастает период ее охлаждения до критической температуры (0 градусов); кроме того — тёплый бетон схватывается и набирает прочность значительно стремительнее.
  • В смесь вводятся добавки, ускоряющие ее затвердевание. Как вариант — используются быстротвердеющие портландцементы высоких марок, каковые, не считая ускоренного комплекта прочности, нужны тем, что в ходе гидратации выделяют больше тепла.
  • Другой подход сводится к понижению температуры кристаллизации воды в застывающей цементной смеси. Благодаря соответствующим добавкам комплект прочности длится при отрицательных температурах.

Полезно: стоит предостеречь от применения для данной цели солевых растворов. Их цена вправду ниже специальных синтетических добавок; но она нивелируется высоким (от 5%) содержанием соли в воде для затворения. Наряду с этим высокое содержание солей снижает итоговую прочность бетона и содействует ускоренной коррозии арматуры.

Наконец, для модуля поверхности более чем 10 единственное здравое решение — подогрев бетона греющим кабелем либо тепловыми пушками до комплекта определенного процента проектной прочности. Значение минимальной прочности до заморозки зависит от области эксплуатации и класса бетона монолита; полная инструкция по подбору значений содержится в СНиП 3.03.01-87.

Конструкция, класс бетона Минимальная прочность
Монолиты, предназначенные для эксплуатации в зданий; фундаменты под промышленное оборудование, не подвергающиеся ударным нагрузкам; подземные сооружения 5 МПа
Монолитные конструкции из бетона В7,5 — В10, эксплуатирующиеся на открытом воздухе 50% марочной
Монолитные конструкции из бетона В12,5 — В25, эксплуатирующиеся на открытом воздухе 40% марочной
Монолитные конструкции из бетона В30 и выше, эксплуатирующиеся на открытом воздухе 30% марочной
Преднапряженные конструкции (изготовленные на базе растянутого армирующего каркаса из упругих сталей) 80% марочной
Конструкции, нагружаемые сразу после прогрева полной проектной нагрузкой 100% марочной

Распалубка

По окончании комплекта минимально стабилизации температуры и необходимой прочности монолита снимается опалубка и убирается теплоизоляция. Потому, что это происходит при отрицательных температурах, дельта между поверхностью бетона и окружающим воздухом также ответственна и также привязана к модулю поверхности.

  • При Мп, лежащем в диапазоне 2-5, и коэффициенте армирования (отношении неспециализированного сечения арматуры к сечению монолита) до 1% максимально допустимая дельта температур образовывает 20 С.
  • При коэффициенте армирования от 1 до 3 процентов большая дельта температур — 30 градусов.
  • При коэффициенте армирования более чем 3% воздушное пространство возможно на 40 градусов холоднее бетона.
  • При модуле поверхности более чем 5 1/м максимально допустимые перепады температур для различных коэффициентов армирования принимают значения 30, 40 и 50 градусов соответственно.

Бетонирование конструкций сводов и арок

Своды и арки небольших пролетов бетонируют за один прием без перерыва, укладывая бетонную смесь от пят к замку, чтобы не вызывать перекоса опалубки. При пролетах шириной более 15 м там, где применяют катучую опалубку, бетонирование производят отдельны­ми клиньями между которыми оставляют не заполненные бетон­ной смесью разрывы шириной 200—500 мм. Эти разрывы бетонируют в последнюю очередь — через 5—7 дней после укладки бе­тонной смеси основных клиньев. Клинья и бетонируют одновремен­но с двух сторон, от пят к замку, чтобы не вызвать деформации катучей опалубки.

Торкретирование

При бетонировании тонкостенных железобетон­ных конструкций (резервуаров, сводов оболочек и т.п.), а также для исправления дефектов и восстановления поврежденных железобетон­ных конструкций применяют торкретирование.

Торкретированием называют процесс нанесения под давлением мелкозернистой бетонной смеси (торкрет-бетона) или цементно-песчаного раствора в один или несколько слоев на отделываемую поверх­ность (армированную или неармированную).

Устройство рабочих швов. Рабочие швы выполняют в конструкциях в тех случаях, когда необходимо сделать перерыв в бетонировании (обеденный перерыв, конец смены и т.п.). Поверхность рабочих швов в колоннах и балках должна быть перпендикулярна оси этих конструкций, а в плитах и стенах — их поверхности. При продолжении работ для получения хорошего сцепления ранее уложенного и уже начавшего схватываться бето­на с вновь укладываемым необходимо поверхность шва очистить металлическими щет­ками и промыть водой, уложить на расчищенный шов тонкий слой цементного раствора, а затем продолжить бетонирование. При торкретировании больших площадей в несколько слоев рабочие швы распола­гают в отдельных слоях вразбежку, образуя ступенчатый шов.

Выдерживание бетона (твердение) и уход за ним

Лабораториями заводов, отпускающих товарные бетонные смеси и подбирающих их состав, даются указания, как выдерживать бетон различных составов, каким должен быть уход за ним, какой требуется температурно-влажностный режим, в каких случаях следует применять вакуумирование и другие меры с целью создания благоприятных условий для твердения бетона в разное время года и при различных климатических условиях. Технический персонал строек, получив указания заводских лаборато­рий, обязан согласовать их с проектной организацией.

Читайте также: Правильно установленная опора – залог качественного освещения

Свежеуложенный бетон необходимо выдерживать во влажном со­стоянии, предохраняя его от сотрясений, ударов, а также от резких изменений температуры и быстрого высыхания. В жаркую и ветреную погоду твердеющий бетон в течение 3-14 дней систематически полива­ют водой 3—4 раза в сутки (в зависимости от вида и марки цемента, а также наличия пластифицирующих добавок). Забетонированные большие открытые поверхности предохраняют различными защитными пленками, щитами, покраской лаками и т.д. При температуре воздуха ниже 5° С поливку бетона водой прекра­щают и принимают меры по предохранению его от воздействия низких температур.

В тех случаях, когда требуется (по указанию проекта) ускорить твердение пластичной бетонной смеси, применяют вакуумирование бетона. Из пластичной бетонной смеси с помощью специальных при­способлений (вакуум-щитов) отсасываемся некоторое количество воды, в результате чего происходит механическое обжатие бетона. При этом бетонная масса уменьшается в объеме на 0,5—1,5% при одновременном увеличении ее плотности и прочности.

За качеством бетонных и железобетонных работ следует вести систематический контроль, проводя необходимые анализы, исследова­ния и испытания. Качество бетона в железобетонных конструкциях и сооружениях можно проверять при помощи акустических и радио­метрических методов определения прочности бетона, его однородности, наличия пор, трещин и т. п.

Организация, выполняющая работы на строительстве, обязана вести установленную техническую документацию (акты, журналы) по проведению работ и контролю за их качеством. В журнале необходимо фиксировать способы укладки, состояние бетонной смеси во время укладки, погоды и т. п. Прочность уложенного бетона проверяют путем испытаний на сжатие серии образцов, изготовленных при бетонировании и хранившихся в условиях, предусмотренных соответствующими нормативами.

Оценка прочности бетона в сооружении определяется по результа­там испытаний, проводимых в соответствии с требованиями СНиП. Если будет установлено, что бетон не отвечает предъявленным к нему требованиям, в этом случае возможность и порядок исправления дефек­тов, сроки использования возведенных конструкций согласуются с проект­ной организацией.

Понятие модуля упругости

Все твердые тела при возрастании нагрузки подвержены деформациям. Причем сначала изменения носят обратимый характер, а их зависимость от приложенных усилий — линейная.

Тело восстанавливает размеры и форму после прекращения внешнего воздействия. Здесь применяется закон Гука, где абсолютное сжатие или удлинение прямо пропорционально приложенной силе с коэффициентом пропорциональности, равным модулю упругости.

С ростом нагрузки тело вступает в фазу необратимых изменений, где деформации носят неупругий пластичный характер. В этой зоне удлинение или сжатие образцов при испытаниях происходят без значительного увеличения внешней силы.

В дальнейшем бетонный образец реагирует на усилия нелинейно — деформации растут без увеличения нагрузки. Это — зона ползучести. Связи внутри материала разрушаются, конструкция теряет прочность.

В рыхлых непрочных смесях присутствует стадия псевдопластических деформаций, когда с уменьшением нагрузки изменения размеров нарастают. Появляются отслоения, трещины и другие деструкции тела бетона.

Последующее увеличение усилий растяжения или сжатия приводят к полному разрушению образца.

Линейная зависимость между напряжением и деформациями в фазе упругости выражается формулой:

σ=E*εпред,

где E — модуль упругости (Па);

εпред — относительная деформация, т.е. отношение абсолютного удлинения к начальному размеру (∆l/l0).

Модуль упругости определяют опытным путем. При испытаниях строят диаграмму зависимости деформаций от усилий, прикладываемых к образцу. Тангенс угла кривизны на участке упругих изменений размеров и есть искомая величина. Значения для разных классов и марок бетона занесены в таблицы.

Зависимость деформаций от напряжений
График зависимости деформаций от напряжений при постепенном загружении

Зная E и действующие усилия, рассчитывают упругие абсолютные деформации бетона в конструкции по формуле:

∆l= σ* l0/EА,

где σ — напряжение, равное отношению внешней силы к площади сжатой или растянутой зоны сечения (P/F).

Чем больше модуль упругости, тем меньшие деформации при нагрузках испытывает материал. Значения E варьируются от 19 до 40 МПа*10-3.

Распалубливание бетонных и железобетонных конструкций

Сроки распалубливания бетонных и железобетонных конструкций должны быть указаны в проекте производства работ. Боковые элементы опалубки, не несущие нагрузки от веса конструк­ций, допускается снимать только по достижении бетоном прочности, обе­спечивающей сохранность поверхности и кромок углов при снятии опа­лубки.

Снятие несущей опалубки железобетонных конструкций допускает­ся только после достижения бетоном прочности (в % от проектной):

  • для плит и сводов пролетом до 2 м.
  • то же, пролетом от 2 до 8 м.
  • для балок и прогонов пролетом до 8 м . несущих конструкций пролетом более 8 м.

Для сооружений, возводимых в сейсмических районах, величина прочности бетона при снятии несущей опалубки конструкций должна указываться в проекте.

Читайте также: Арматура для фундамента

Распалубливание железобетонных конструкций, частичное загруже- ние их материалами и допуск рабочих на забетонированные конструкции могут быть и при меньшей прочности бетона, при условии проверки рас­четом прочности и жесткости конструкций под действием фактических нагрузок. Удаление стоек, поддерживающих опалубку несущих конструкций, производится лишь после снятия боковой опалубки и осмотра распалубленных конструкций. При этом обязательно должны быть осмотрены ко­лонны, поддерживающие конструкции.

Снятие опалубки, воспринимающей вес бетона конструкций, армиро­ванных несущими сварными каркасами, допускается после достижения бетоном 25% проектной прочности.

Сроки распалубливания массивных конструкций назначаются с уче­том выполнения необходимого температурно-влажностного режима твер­дения, предусмотренного проектом для данного сооружения. Снимать опалубки всех видов следует осторожно, чтобы не повре­дить поверхностей распалубливаемых конструкций и не испортить щиты и элементы опалубки, которые можно будет использовать повторно. При распалубливании балок и днищ прогонов сначала ослабляют клинья под стойками лесов или винтов.

Модуль поверхности бетона: определение, примеры расчета. Скорость нагрева и охлаждения

Что это за параметр — модуль поверхности? Нам предстоит познакомиться с новым для себя понятием и изучить способы расчета его значений для реальных конструкций. Кроме того, мы затронем основы зимнего бетонирования и влияние модуля поверхности на применяемые при этом методы проведения работ.

Тема статьи непосредственно связана с зимним бетонированием.

Определение

Идеальное время для бетонных работ на открытом воздухе — теплый сезон. Увы, не всегда есть возможность дождаться весны: в ряде случаев монолитное строительство осуществляется и при отрицательных температурах.

Кроме того: в ряде регионов страны теплый сезон просто-напросто слишком короток. В Якутске, например, среднемесячная температура выше нуля лишь пять месяцев в году.

При бетонировании в мороз основная проблема — дать бетону набрать прочность до начала кристаллизации воды в нем. Основные методы ее решения сводятся к теплоизоляции опалубки или подогреву уложенной смеси. При этом выбор конкретного решения определяется прежде всего тем, насколько быстро форма с бетоном будет остывать.

Скорость же, с которой определенная конструкция будет терять тепло, определяется отношением площади ее охлаждаемой поверхности к объему.

Практический вывод: медленнее всего будет остывать идеальный шар.

Модуль поверхности бетонной конструкции — это, собственно, и есть отношение ее охлаждаемой площади к внутреннему объему. Формула модуля поверхности бетона предельно проста: Мп = S/V, где Мп — модуль поверхности; S — площадь поверхности конструкции, контактирующая с холодным воздухом, грунтом или охлажденными ниже нуля прочими элементами конструкции; V — полный объем монолита.

Поскольку в числителе формулы значение указывается в квадратных метрах (м2), а в знаменателе — в кубических (м3), искомый параметр будет измеряться в странных единицах, описываемых как 1/м, или м-1.

Важный момент: поскольку процесс набора бетоном прочности практически прекращается при охлаждении до 0 градусов (температуры кристаллизации воды), охлаждаемыми считаются лишь те части поверхности монолита, которые контактируют с более холодным воздухом, основанием или конструктивными элементами.

При укладке бетона на непромерзший грунт нижняя поверхность фундамента исключается из расчетов.

Примеры расчета

Давайте рассчитаем интересующий нас параметр для плитного фундамента размером 6х10 м и толщиной 0,25 м, укладываемого при отрицательной температуре окружающего воздуха на талый грунт.

  1. Очевидно, что охлаждаться будут все поверхности плиты, кроме нижней: она ведь контактирует с грунтом, имеющим температуру выше нуля. Складываем их площади: (6 х 0,25) х 2 + (10 х 0,25) х 2 + 6 х 10 = 3 + 5 + 60 = 68 м2.
  2. Рассчитываем объем плиты. Он равен, как мы помним из школьного курса геометрии, произведению сторон прямоугольного параллелепипеда: 10 х 6 х 0,25 = 15 м3.
  3. Вычисляем модуль поверхности: 68 м2 / 15 м3 = 4,5(3) 1/м.

На практике расчеты балок, цилиндров с переходами диаметров и прочих конструкций могут быть достаточно сложны и занимать значительное время. Как и все люди, строители склонны по возможности упрощать себе жизнь; для этой цели существует несколько упрощенных формул расчетов для основных конструктивных элементов.

Конструктивный элемент Формула расчета
Балки и колонны прямоугольного сечения со сторонами сечения, равными A и B Мп = 2/А + 2/В. Длина балки или высота колонны не влияет на модуль поверхности и не учитывается в расчетах.
Балки и колонны квадратного сечения со стороной сечения, равной А Мп = 4/А
Куб со стороной А Мп = 6/А. В этом случае учитываются все поверхности куба; расчет актуален для случая, когда все они охлаждаются (куб стоит на мерзлом грунте и контактирует с холодным воздухом).
Отдельно стоящий на мерзлом грунте параллелепипед со сторонами А, В и С Мп = 2/А + 2/В + 2/С
Параллелепипед со сторонами А, В и С, прилегающий одной из граней к теплому массиву Мп = 2/А + 2/В + 1/С
Цилиндр с радиусом R и высотой С Мп = 2/R + 2/С
Плита или стена толщиной А, охлаждаемая с обеих сторон Мп = 2/А

Наглядный пример: монолитная стена охлаждается с обеих сторон.

Что с этим делать

Итак, мы научились вычислять некий параметр, который влияет на скорость остывания массива на холоде. И как применить его в реальном строительстве?

Скорость нагрева и охлаждения

Поскольку обеспечить одновременный нагрев или охлаждение бетона по всему объему массива невозможно, любое изменение условий волей-неволей приведет к появлению дельты температур между ядром и поверхностью.

Внимание: эта дельта будет тем больше, чем более массивна конструкция. То есть, проще говоря, чем меньше отношение ее площади к объему.

Увеличение перепада температур между ядром и поверхностью неизбежно приведет к росту внутренних напряжений в материале; поскольку речь идет о бетоне, не набравшем прочность, трещины не просто возможны — гарантированы.

Добавить комментарий

Adblock
detector