24.04.2024

Расчетные и нормативные сопротивления материалов строительных конструкций.

Любая бетонная конструкция должна переносить определенные в технической документации нагрузки в течение длительного времени без разрушений. В строительных проектах указываются основные характеристики, к которым относятся плотность, показатели расчетного сопротивления бетона, морозоустойчивость, водонепроницаемость. Проблема состоит в том, что даже самый качественный бетон неоднороден. Элементы имеют различные геометрические размеры и сечения, поэтому разные участки сооружения могут иметь неодинаковые свойства. Для уточнения характеристик материала вводится методика вычисления прочности.

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Читайте также: Гидротехнический бетон: ГОСТ, технические характеристики

Определение коэффициента прочности

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

Rb=Rbn/γb,

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

Rbt=Rbtn/γbt,

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m2, тс/м2, кгс/см2). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

  • Тип расчета. На основании лабораторных испытаний или при неизвестных характеристиках грунта.
  • Характеристики грунта. Тип, коэффициент пористости и показатель текучести, а также осредненное расчетное значение удельного веса грунтов.
  • Параметры фундамента. Ширина основания и глубина заложения.

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

  • скальные;
  • нескальные.

Читайте также: Противоморозные добавки для бетона — виды и действие

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

  • Пески (мелкие, средние, крупные…);
  • Супеси (легкие, тяжелые);
  • Суглинки (легкие, средние, тяжелые);
  • Глины (легкие, тяжелые…).

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

  • Намочите почву до состояния, когда из нее можно будет сформировать шар.
  • Попробуйте раскатать шар в продолговатое тело (шнур).
  • Если у вас не получилось этого сделать, то перед вами песчаная почва.
  • Если немного схватывается, но все равно разрушается – это супесь.
  • Если шнур удается свернуть в кольцо, но наблюдаются разрывы/трещины – это суглинок.
  • Если кольцо замкнулось, а тело осталось невредимым – это глина.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите «Рассчитать«.

Нормативное сопротивление

До 2001 года единственной характеристикой бетона указывающей на противодействие механической силе, считалась марка, обозначавшаяся буквой «М». Теперь, согласно СНиП 2.03.01 введена другая характеристика, так называемый класс прочности, обозначающаяся буквой «В». Для определения свойств железобетонных и бетонных конструкций были предложены нормативы, согласно СП 52-101-2003.

Для определения класса раствор заливают в куб с ребром 150 мм. Уплотняют его в форме и дают полностью затвердеть при температуре 18-20ºС в течение 28 суток. После этого образец поступает на испытание, и разрушается на специальном прессе. Сопротивление бетона осевой нагрузке, выраженное в МПа и является свойством, по которому определяется данная характеристика. Иногда для определения класса берется призменный образец, высота которого в четыре раза больше ребра основания.

Дополнительно образец подвергается проверке на осевое растяжение, который тоже необходимо учитывать при проведении вычислений.

При правильном определении класса не требуется делать дополнительных испытаний, поскольку они уже занесены в специализированные таблицы.

Значения нормативного сопротивления для разных классов

Используя эти таблицы можно, имея данные на сжатие, сразу определить показатели и на растяжение. По ним ясно видно – этот параметр для любого бетона на растяжение гораздо меньше, чем на сжатие, это обязательно учитывается при проектировании.

Читайте также: Технология производства и обработки сборного и сборно-монолитного железобетона

Эти параметры для различного класса прочности сводятся в специальную таблицу. Значения могут меняться в зависимости от условий определяемых соответствующими коэффициентами:

Значения расчетного споротивления

Из таблицы видно, что расчетное значение ниже нормативного, поскольку учитывает сторонние факторы, тип воздействия на бетонную конструкцию, возможную неоднородность материала, центр тяжести контура.

При определении противодействия бетона силовому воздействию учитывается его деформация. Для этого берется начальный параметр данной величины и делится на коэффициент, включающий в себя ползучесть, а также поперечную деформацию массива, его температурную деформацию в диапазоне -40 — +50ºС. При вычислении свойств напряженно деформированного элемента используют специальные диаграммы, демонстрирующие предельную нагрузку в зависимости от сечений и расположения детали и вида материала. Эта методика позволяет рассчитывать факторы, приводящие к появлению трещин.

Диаграмма деформирования бетона
График Зависимости напряжений от деформаций

При определении характеристик железобетонных конструкций применяют методику моделирования наклонных сечений. Учитывается толщина и тип арматуры, отдельно рассчитывается ее прочность.

buildingbook.ru

При расчёте на прочность деревянных конструкций необходимо знать его расчётное сопротивление. Для деревянных конструкций есть несколько типов расчётных сопротивлений: на изгиб, сжатие, смятие, скол вдоль и поперёк волокон, растяжение вдоль и поперёк волокон, сжатие и смятие поперек волокон. Вначале рассмотрим, как вычисляется расчётное сопротивление деревянных конструкций, затем рассмотрим его расчёт на примере вычисления расчётного сопротивления на изгиб для доски балки перекрытия.

Методика расчёта взята из СП 64.133330.2017, который можно скачать по этой ссылке.

Расчётное сопротивление древесины определяем по формуле 1 СП 64.13330.2017:

где RA – расчётное сопротивление древесины согласно таблицы 3 СП 64.13330.2017 в зависимости от сечения и сорта древесины

Таблица 3 СП 64.13330.2017:

Напряженное состояние и характеристика элементов Расчетное сопротивление, МПа, для сортов древесины
Обозначение 1 2 3
1 Изгиб, сжатие и смятие вдоль волокон:
а) элементы прямоугольного сечения [за исключением указанных в б), в)] высотой не более 50 см. При высоте сечения более 50 см [см. 6.9в)] 21 19,5 13
б) элементы прямоугольного сечения шириной от 11 до 13 см при высоте сечения от 11 до 50 см 22,5 21 15
в) элементы прямоугольного сечения шириной более 13 см при высоте сечения от 13 до 50 см 24 22,5 16,5
г) элементы из круглых лесоматериалов без врезок в расчетном сечении 24 15
2 Растяжение вдоль волокон:
а) элементы из цельной древесины 15 10,5
б) клееные элементы 18 13,5
3 Сжатие и смятие по всей площади поперек волокон 2,7 2,7 2,7
4 Смятие поперек волокон местное:
а) в опорных частях конструкций, лобовых врубках и узловых примыканиях элементов 4,5 4,5 4,5
б) под шайбами при углах смятия от 90° до 60° 6 6 6
5 Скалывание вдоль волокон:
а) при изгибе элементов из цельной древесины 2,7 2,4 2,4
б) при изгибе клееных элементов 2,4 2,25 2,25
в) в лобовых врубках для максимального напряжения 3,6 3,2 3,2
г) местное в клеевых соединениях для максимального напряжения 3,2 3,2 3,2
6 Скалывание поперек волокон в соединениях:
а) элементов из цельной древесины 1,5 1,2 0,9
б) клееных элементов 1,05 1,05 0,9
7 Растяжение поперек волокон элементов из клееной древесины 0,23 0,15 0,12
8 Срез под углом к волокнам 45° 9 7,5 6
То же 90° 16,5 13,5 12
Примечания:
1 В конструкциях построечного изготовления величины расчетных сопротивлений на растяжение, принятые по пункту 2а) настоящей таблицы, следует снижать на 30%.
2 Расчетное сопротивление изгибу для элементов настила и обрешетки под кровлю из древесины 3-го сорта следует принимать равным 13 МПа.

Расчетные сопротивления для других пород древесины устанавливают путем умножения величин, приведенных в таблице 3, на переходные коэффициенты mп, указанные в таблице 5.

Таблица 5 СП 64.13330.2017

Древесная порода Коэффициент mп для расчетных сопротивлений
растяжению, изгибу, сжатию и смятию вдоль волокон RP , RИ , RС ,RСМ сжатию и смятию поперек волокон RС90 , RСМ90 скалыванию RСК
Хвойные
1 Лиственница, кроме европейской 1,2 1,2 1
2 Кедр сибирский, кроме кедра Красноярского края 0,9 0,9 0,9
3 Кедр Красноярского края 0,65 0,65 0,65
4 Пихта 0,8 0,8 0,8
Твердые лиственные
5 Дуб 1,3 2 1,3
6 Ясень, клен, граб 1,3 2 1,6
7 Акация 1,5 2,2 1,8
8 Береза, бук 1,1 1,6 1,3
9 Вяз, ильм 1 1,6 1
Мягкие лиственные
10 Ольха, липа, осина, тополь 0,8 1 0,8
Примечание – Коэффициенты mп, указанные в таблице, для конструкций опор воздушных линий электропередачи, изготавливаемых из не пропитанной антисептиками лиственницы (при влажности 25%), умножаются на коэффициент 0,85.

mДЛ – коэффициент длительной прочности, принимаемый по таблице 4 СП 64.13330.2017 в зависимости и того, для чего служит конструкция

Таблица 4 СП 64.13330.2017

Обозначение режимов нагружения Характеристика режимов нагружения Приведенное расчетное время действия нагрузки, с Коэффициент длительной прочности mДЛ
А Линейно возрастающая нагрузка при стандартных машинных испытаниях 1-10 1,0
Б Совместное действие постоянной и длительной временной нагрузок, напряжение от которых превышает 80% полного напряжения в элементах конструкций от всех нагрузок 108-109 0,53
В Совместное действие постоянной и кратковременной снеговой нагрузок 106-107 0,66
Г Совместное действие постоянной и кратковременной ветровой и (или) монтажной нагрузок 103-104 0,8
Д Совместное действие постоянной и сейсмической нагрузок 10-102 0,92
Е Действие импульсивных и ударных нагрузок 10-1-10-8 1,1-1,35
Ж Совместное действие постоянной и кратковременной снеговой нагрузок в условиях пожара 103-104 0,8
И Для опор воздушных линий электропередачи — гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой 104-105 0,85
К Для опор воздушных линий электропередачи — при обрыве проводов и тросов 10-1-10-2 1,1

Пmi – произведение коэффициентов условий работ согласно п.6.9 СП 64.13330.2017. Рассмотрим все коэффициенты:

п.6.9 а) для различных условий эксплуатации конструкций – коэффициент mВ, указанный в таблице 9:

Таблица 9 СП 64.13330.2017

Условие эксплуатации (таблица 1) 1А и 1 2 3 4
Коэффициент mВ 1 0,9 0,85 0,75

Условия эксплуатации указаны в таблице 1 СП 64.13330.2017

Таблица 1 СП 64.13330.2017

Класс условий эксплуатации Эксплуатационная влажность древесины, % Максимальная относительная влажность воздуха при температуре 20°С, %
1 (сухой) Не более 8 40
Не более 10 50
2 (нормальный) Не более 12 65
3 (влажный) Не более 15 75
4 (мокрый) Не более 20 85
Более 20 Более 85
Примечания 1 Допускается в качестве «эксплуатационной» принимать «равновесную» влажность древесины (рисунок А.1 Приложения А СП 64.13330.2017). 2 Допускается кратковременное превышение максимальной влажности в течение 2-3 нед. в году.

п.6.9 б) конструкций, эксплуатируемых при установившейся температуре воздуха ниже плюс 35°С, — коэффициент mТ=1; при температуре плюс 50°С – коэффициент mТ=0,8. Для промежуточных значений температуры коэффициент принимают по интерполяции;

п.6.9 в) изгибаемых, внецентренно сжатых, сжато-изгибаемых и сжатых клееных элементов прямоугольного сечения высотой более 50 см значения расчетных сопротивлений изгибу и сжатию вдоль волокон – коэффициент mб, указанный в таблице 10:

Таблица 10 СП 64.13330.2017

Высота сечения, см 50 и менее 60 70 80 100 120 и более
Коэффициент mб 1 0,96 0,93 0,90 0,85 0,8

п.6.9 г) растянутых элементов с ослаблением в расчетном сечении и изгибаемых элементов из круглых лесоматериалов с подрезкой в расчетном сечении – коэффициент mо=0,8;

п.6.9 д) элементов, подвергнутых глубокой пропитке антипиренами под давлением, — коэффициент mа=0,9;

Читайте также: Определение прочности бетона. метод отрыва. скалывание

п.6.9 е) изгибаемых, внецентренно сжатых, сжато-изгибаемых и сжатых клееных деревянных элементов, в зависимости от толщины слоев, значения расчетных сопротивлений изгибу, скалыванию и сжатию вдоль волокон — коэффициент mСД, указанный в таблице 11:

Таблица 11 СП 64.13330.2017

Толщина слоя, мм 10 и менее 19 26 33 42
Коэффициент mСД 1,2 1,1 1,05 1,0 0,95

п.6.9 ж) гнутых элементов конструкций значения расчетных сопротивлений растяжению, сжатию и изгибу — коэффициент mГН, указанный в таблице 12:

Таблица 12 СП 64.13330.2017

Напряженное состояние Обозначение расчетных сопротивлений Коэффициент mГН при отношении rK/a
150 200 250 500 и более
Сжатие и изгиб Rc, Rи 0,8 0,9 1 1
Растяжение 0,6 0,7 0,8 1
Примечание — rK — радиус кривизны гнутой доски или бруска; a — толщина гнутой доски или бруска в радиальном направлении.

п. 6.9 и) в зависимости от срока службы – коэффициент mc.c, указанный в таблице 13:

Таблица 13 СП 64.13330.2017

Вид напряженного состояния Значение коэффициента mc.c при сроке службы сооружения
≤50 лет 75 лет 100 лет и более
Изгиб, сжатие, смятие вдоль и поперек волокон древесины 1,0 0,9 0,8
Растяжение и скалывание вдоль волокон древесины 1,0 0,85 0,7
Растяжение поперек волокон древесины 1,0 0,8 0,5
Примечание — Значение коэффициента mc.c для промежуточных сроков службы сооружения принимаются по линейной интерполяции.

п. 6.9 к) для смятия поперек волокон при режимах нагружения Г-К (таблица 4, приведена выше) — коэффициент mcм=1,15.

Пример расчёта расчётного сопротивления

Для примера рассмотрим расчёт расчётного сопротивления на изгиб для балки из доски сечением 50х200 из сосны 1-го сорта.

RAИ=21 МПа (п.1а таблицы 30)

mДЛ =0,53 (режим Б таблицы 4)

mв=0,9 коэффициент для условий эксплуатации подбирается по таблице 9 СП 64.13330.2017 согласно условиям эксплуатации по таблице 1 СП 64.13330.2017. При влажности воздуха до 65% (для жилых помещений) данный коэффициент равен 0,9

mT =1– коэффициент условий работы при температуре эксплуатации для температуры ниже +35°С равен единице.

mб =1 коэффициент условий работы в зависимости от высоты сечения при высоте сечения ниже 50 см равен 1.

mо – не применяется т.к. наша конструкция не относится к ситуациям п.6.9 г.

mа— не применяется т.к. доску мы не пропитываем антипиренами;

mСД – не применяется т.к. данный коэффициент используется для клееных элементов;

mГН – не применяется т.к. данный коэффициент используется для гнутых элементов;

mc.c =1 коэффициент условий работы для срока службы менее 50 лет. Срок службы здания регламентирован ГОСТ 27751-2014 Надежность строительных конструкций и оснований Таблица 1. Для здания и сооружений массового строительства в обычных условиях эксплуатации (здания жилищно-гражданского и производственного строительства) принимается не менее 50 лет.

mcм – не применяется т.к. в нашем случае режим нагружения будет Б.

Итого Пmi равен:

Пmi= mв*mT*mб*mc.c =0,9*1*1*1=0,9

Вычисляем расчётное сопротивление изгибу:

Rи=RAИ *mДЛ*Пmi=21*0,53*0,9=10,017 МПа
Posted in Деревянные конструкции Tagged Деревянные конструкции

Добавить комментарий

Adblock
detector